11/01/2023

Learning an Inventory Control Policy with General Inventory Arrival Dynamics

S Andaz, C Eisenach, D Madeka, K Torkkola, R Jia, D Foster, S Kakade, Learning an Inventory Control Policy with General Inventory Arrival Dynamics, 2023, arXiv preprint arXiv:2310.17168. (Amazon)

In this paper we address the problem of learning and backtesting inventory control policies in the presence of general arrival dynamics -- which we term as a quantity-over-time arrivals model (QOT). We also allow for order quantities to be modified as a post-processing step to meet vendor constraints such as order minimum and batch size constraints -- a common practice in real supply chains. To the best of our knowledge this is the first work to handle either arbitrary arrival dynamics or an arbitrary downstream post-processing of order quantities. Building upon recent work (Madeka et al., 2022) we similarly formulate the periodic review inventory control problem as an exogenous decision process, where most of the state is outside the control of the agent. Madeka et al. (2022) show how to construct a simulator that replays historic data to solve this class of problem. In our case, we incorporate a deep generative model for the arrivals process as part of the history replay. By formulating the problem as an exogenous decision process, we can apply results from Madeka et al. (2022) to obtain a reduction to supervised learning. Finally, we show via simulation studies that this approach yields statistically significant improvements in profitability over production baselines. Using data from an ongoing real-world A/B test, we show that Gen-QOT generalizes well to off-policy data.

10/26/2023

Sparse PCA: A New Scalable Estimator Based On Integer Programming

Kayhan Behdin and Rahul Mazumder, Sparse PCA: A New Scalable Estimator Based On Integer Programming, arXiv:2109.11142v2, 2021. (Julia ahd Gurobi code)

We consider the Sparse Principal Component Analysis (SPCA) problem under the well-known spiked covariance model. Recent work has shown that the SPCA problem can be reformulated as a Mixed Integer Program (MIP) and can be solved to global optimality, leading to estimators that are known to enjoy optimal statistical properties. However, current MIP algorithms for SPCA are unable to scale beyond instances with a thousand features or so. In this paper, we propose a new estimator for SPCA which can be formulated as a MIP. Different from earlier work, we make use of the underlying spiked covariance model and properties of the multivariate Gaussian distribution to arrive at our estimator. We establish statistical guarantees for our proposed estimator in terms of estimation error and support recovery. We propose a custom algorithm to solve the MIP which is significantly more scalable than off-the-shelf solvers; and demonstrate that our approach can be much more computationally attractive compared to earlier exact MIP-based approaches for the SPCA problem. Our numerical experiments on synthetic and real datasets show that our algorithms can address problems with up to 20000 features in minutes; and generally result in favorable statistical properties compared to existing popular approaches for SPCA.