生活中到處充滿著不確定性,例如吃飯排隊的等候時間、機台生產的良率、民調統計數字的分析等等。工業系也開設許多相關的課程,例如品質管制、資料分析、智慧製造、實驗設計、機器學習、人工智慧等等,以解決工商業的問題。
許多人修這門課的時候,很痛苦 (1)。除了了解其應用外,建議可以念一些科普的書,增加學習動機:
- 葉丙成,賴以威等著,葉丙成的機率驚豔:當數學遇上文學,學生考不好也會笑著離開,究竟出版社,2014/02/25
- 陳志武,耶魯最受歡迎的金融通識課,今周刊,2019
- 陳傑豪,大數據玩行銷:改變世界的18個大數據新思維,第 1 本把大數據變營業額的行銷聖經,30 雜誌,2015
- 蔣榮先,從AI到智慧醫療,商周,2020
- 簡禎富,工業3.5:台灣企業邁向智慧製造與數位決策的戰略,天下雜誌,2019
- Ajay Agrawal, Joshua Gans, and Avi Goldfarb, Prediction Machines: The Simple Economics of Artificial Intelligence, Harvard Business Review Press, 2018.
- Data 8 The Foundations of Data Science by UC Berkeley
- Derek Bok, Our Underachieving Colleges: A Candid Look at How Much Students Learn and Why They Should Be Learning More, Princeton University Press, 2005. (張善楠譯,大學教了沒?:哈佛校長提出的 8 門課,天下文化,2008)
- Thomas H. Davenport and Jinho Kim, Keeping Up with the Quants:Your Guide to Understanding and Using Analytics, Harvard Business Review Press, 2013. (錢莉華譯,輕鬆搞懂數字爆的料:不需統計背景,也能練就數據解讀力,天下文化 ,2015)
- G. Gigerenzer, Risk Savvy: How to Make Good Decisions, Penguin Books, 2014. (廖育琳、陳雅莉、陳松筠譯,機率陷阱:從購物、保險到用藥,如何做出最萬無一失的選擇?商周出版 ,2015)
- Alex J. Gutman and Jordan Goldmeier, Becoming a Data Head: How to Think, Speak, and Understand Data Science, Statistics, and Machine Learning, Wiley, 2021.
- D. Kahneman, Thinking Fast and Slow, Farrar, Straus and Giroux, 2011. (洪蘭譯,快思慢想,天下遠見,2012)
- L. Mlodinow, The Drunkard's Walk: How Randomness Rules our Lives, First Vintage Books, 2009. (胡守仁譯,醉漢走路:機率如何左右你我的命運與機會,天下遠見,2009)
- Nate Silver, The Signal and the Noise: Why So Many Predictions Fail — but Some Don't, Penguin Press, 2012 (蘇子堯譯,精準預測:如何從巨量雜訊中,看出重要的訊息?,三采,2013)
- N. Taleb, The Black Swan: The Impact of the Highly Improbable, Random House, 2010. (林茂昌譯,黑天鵝效應,大塊文化,2011)
- C.J. Wheelan, Naked Statistics: Stripping the Dread from the Data, W.W. Norton, 2013. (愛荷譯,聰明學統計的 13 又 1/2 堂課 : 每個數據背後都有戲, 搞懂才能做出正確判斷,先覺,2013)
- Gregory Zuckerman, The Man Who Solved the Market: How Jim Simons Launched the Quant Revolution, Penguin Group, 2019 (林錦慧譯,洞悉市場的人:量化交易之父吉姆‧西蒙斯與文藝復興公司的故事,天下文化,2020)
(1) 學習數學的四個層次:(3) 在許多行業的應用
沒有留言:
張貼留言