5/31/2022

如果沒有學生佔領了立法院

太陽花學運

如果沒有學生佔領了立法院:
我們不知道馬總統四年前的承諾 (逐字稿)
「兩岸經濟協議是一個綱要性的協議,它基本上先簽一個小而必要的早期收穫條款,然後再一步步地往後簽,不是一步到位。同時呢,它是由海基會跟海協會這兩個單位來簽,本著尊嚴、對等跟互惠的原則。每一次正式協商的前後,都會向立法院報告,並且對外說明協商的進度。協議簽署以後一定會送立法院審議,要通過之後才會生效。」

5/30/2022

學習數學的四個層次:(2) 邏輯推理和抽象思考的能力

學習數學的四個層次:(0) 如何學數學(1) 代表具備基礎的知識與能力(2) 邏輯推理和抽象思考的能力(3) 在許多行業的應用(4) 純粹滿足好奇心或求知慾

2015/12/1 初稿,持續更新中。

一般性說明
  • D. Bok, Our Underachieving Colleges, Princeton University Press, 2007. 張善楠譯,大學教了沒?,天下文化,2008。二十一世紀八個教育目標之一『思辨能力』。(註 1)
  • 程式的邏輯 (if 和 for) 數十年沒有變化,學好數學有助於邏輯能力的培養,參考計算機程式補考後的人生

5/28/2022

Competing in the Age of AI

Marco Iansiti and Karim R. Lakhani, Competing in the Age of AI, Harvard Business Review, January-February 2020, pp. 61-67.

Some key points: 

Removing Limits to Scale, Scope, and Learning

Strategies are shifting away from traditional differentiation based on cost, quality, and brand equity and specialized, vertical expertise and toward advantages like business network position, the accumulation of unique data, and the deployment of sophisticated analytics. 

Putting AI at the Firm’s Core: One strategy, A clear architecture, The right capabilities, An agile “product” focus, Multidisciplinary governance.

5/23/2022

Garrett van Ryzin talks about optimization

以前教營收管理的時候,讀了不少哥倫比亞商學院 van Ryzin 教授的文章,其中一篇說,他們的研究是在解決10年後的問題。各位注意喔,是商學院

最近在讀一本書,某教授寫的序,開頭四個字,就是學用落差

5/22/2022

如何選填大學志願

緣起:朋友念南一中理組的兒子要念大學,詢問我的意見,所以才準備了此檔案的大綱 (電子檔)。

聽到我描述 (相關) 電子產品中需要的機構設計和熱流問題,覺得挺有趣的。後來,他選擇了成大機械系念完 6 年和尚學校的他,聯誼變成一個非常重要的考量因素。

如果喜歡畫畫,以我投影片而言20頁 App 軟體就需要創意和美學22頁的設計需要美學、藝術、和文學大學也有相對應的科系例如數位內容3D 動畫、多媒體;如果會寫程式,有加值效果

5/17/2022

Integration of Face-to-Face Screening With Real-time Machine Learning to Predict Risk of Suicide Among Adults

Drew Wilimitis, Robert W. Turer, Michael Ripperger, et al., Integration of Face-to-Face Screening With Real-time Machine Learning to Predict Risk of Suicide Among AdultsJAMA Netw Open. 2022; 5(5):e2212095. doi:10.1001/jamanetworkopen.2022.12095.
In this cohort study of 120 398 adult patient encounters, an ensemble learning approach combined suicide risk predictions from the Columbia Suicide Severity Rating Scale and a real-time machine learning model. Combined models outperformed either model alone for risks of suicide attempt and suicidal ideation across a variety of time periods.

5/09/2022

外送的經驗

之前看到一個新聞報導,因為薪水不錯,而且自由,台灣的年輕人喜歡從事外送工作。

二三年前,聽到一個國外新聞,實驗外送機器人,時速30公里的機車,可以在1公尺內完全煞車停止。今天上課的時候,跟同學分享這一個報告,忍不住地提醒同學,如果畢業後,都是從事這個行業,也少了人際間的互動;等到幾年後,公司大規模使用外送機器人而裁員,你大學學的東西全忘了,如何轉職?

5/08/2022

2021 Tesla Impact Report

2021 Tesla Impact Report

Autopilot Safety

In 2021, we recorded 0.22 crashes for every million miles driven in which drivers were using Autopilot technology (Autosteer and active safety features). For drivers who were not using Autopilot technology (no Autosteer and active safety features), we recorded 0.77 crashes for every million miles driven. By comparison, NHTSA’s most recent data shows that in the United States there are 1.81 automobile crashes for every million miles driven.

5/07/2022

Outracing champion Gran Turismo drivers with deep reinforcement learning

Wurman, P.R., Barrett, S., Kawamoto, K. et al. Outracing champion Gran Turismo drivers with deep reinforcement learning. Nature 602, 223–228 (2022). https://doi.org/10.1038/s41586-021-04357-7.

Many potential applications of artificial intelligence involve making real-time decisions in physical systems while interacting with humans. Automobile racing represents an extreme example of these conditions; drivers must execute complex tactical manoeuvres to pass or block opponents while operating their vehicles at their traction limits. Racing simulations, such as the PlayStation game Gran Turismo, faithfully reproduce the non-linear control challenges of real race cars while also encapsulating the complex multi-agent interactions. Here we describe how we trained agents for Gran Turismo that can compete with the world’s best e-sports drivers. We combine state-of-the-art, model-free, deep reinforcement learning algorithms with mixed-scenario training to learn an integrated control policy that combines exceptional speed with impressive tactics. In addition, we construct a reward function that enables the agent to be competitive while adhering to racing’s important, but under-specified, sportsmanship rules. We demonstrate the capabilities of our agent, Gran Turismo Sophy, by winning a head-to-head competition against four of the world’s best Gran Turismo drivers. By describing how we trained championship-level racers, we demonstrate the possibilities and challenges of using these techniques to control complex dynamical systems in domains where agents must respect imprecisely defined human norms.