Sims Witherspoon and Will Fadrhonc, Machine learning can boost the value of wind energy, Google, Feb 26, 2019
Using a neural network trained on widely available weather forecasts and historical turbine data, we configured the DeepMind system to predict wind power output 36 hours ahead of actual generation. Based on these predictions, our model recommends how to make optimal hourly delivery commitments to the power grid a full day in advance. This is important, because energy sources that can be scheduled (i.e. can deliver a set amount of electricity at a set time) are often more valuable to the grid.
Although we continue to refine our algorithm, our use of machine learning across our wind farms has produced positive results. To date, machine learning has boosted the value of our wind energy by roughly 20 percent, compared to the baseline scenario of no time-based commitments to the grid.
We can’t eliminate the variability of the wind, but our early results suggest that we can use machine learning to make wind power sufficiently more predictable and valuable. This approach also helps bring greater data rigor to wind farm operations, as machine learning can help wind farm operators make smarter, faster and more data-driven assessments of how their power output can meet electricity demand.
沒有留言:
張貼留言