顯示具有 自駕車 (Self-driving Cars) 標籤的文章。 顯示所有文章
顯示具有 自駕車 (Self-driving Cars) 標籤的文章。 顯示所有文章

9/01/2024

中國無人計程車便宜效率高

施慧中 / 編譯,中國無人計程車便宜效率高 衝擊傳統駕駛就業市場,公視,2024-08-23 

人工智慧時代,無人計程車成為時代趨勢。中國百度旗下的「蘿蔔快跑」是先驅者,在武漢有500多輛規模,超便宜價格戰,讓傳統計程車駕駛面臨飯碗不保的壓力。專家指出AI全面取代人類駕駛,還有至少5到10年,但科技與就業之間的衝突仍須及早應對。

5/09/2022

外送的經驗

之前看到一個新聞報導,因為薪水不錯,而且自由,台灣的年輕人喜歡從事外送工作。

二三年前,聽到一個國外新聞,實驗外送機器人,時速30公里的機車,可以在1公尺內完全煞車停止。今天上課的時候,跟同學分享這一個報告,忍不住地提醒同學,如果畢業後,都是從事這個行業,也少了人際間的互動;等到幾年後,公司大規模使用外送機器人而裁員,你大學學的東西全忘了,如何轉職?

5/08/2022

2021 Tesla Impact Report

2021 Tesla Impact Report

Autopilot Safety

In 2021, we recorded 0.22 crashes for every million miles driven in which drivers were using Autopilot technology (Autosteer and active safety features). For drivers who were not using Autopilot technology (no Autosteer and active safety features), we recorded 0.77 crashes for every million miles driven. By comparison, NHTSA’s most recent data shows that in the United States there are 1.81 automobile crashes for every million miles driven.

3/11/2022

Tackling Climate Change with Machine Learning

David Rolnic et al., Tackling Climate Change with Machine Learning, ACM Computing Surveys, Volume 55, Issue 2, March 2023, Article No.: 42, pp 1–96, https://doi.org/10.1145/3485128

Climate change is one of the greatest challenges facing humanity, and we, as machine learning (ML) experts, may wonder how we can help. Here we describe how ML can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by ML, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the ML community to join the global effort against climate change.

2/21/2022

7 real-world applications of reinforcement learning

 Joy Zhang, 7 real-world applications of reinforcement learning, gocoder, February 17, 2022

1. Autonomous driving with Wayve

2. Personalizing your Netflix recommendations

3. Optimizing inventory levels for Walmart

4. Improving search engine results with search.io

5. Improving language models with OpenAI's WebGPT

6. Trading on the financial markets with IBM's DSX platform

7. Robotics with the University of California, Berkeley

9/26/2021

科技部半導體射月計畫 109 年度產學技術交流

 科技部半導體射月計畫 109 年度產學技術交流

  • Boris Murmann, tinyML: The Perfect Storm for Innovation in Ultra-Low-Power System Design 
  • 梁伯嵩,IC 運算平台趨勢: 數位運算、人工智慧與量子運算
  • Tetsu Ohtou, Semiconductor Process and Equipment Technology for Advanced Logic Devices 
  • 陳俊雄,汽車產業及感測元件發展趨勢

8/05/2021

How Software Is Eating the Car

Robert N. Charette, How Software Is Eating the Car, IEEE Spectrum, 07 Jun 2021.

Ten years ago, only premium cars contained 100 microprocessor-based electronic control units (ECUs) networked throughout the body of a car, executing 100 million lines of code or more. Today, high-end cars like the BMW 7-series with advanced technology like advanced driver-assist systems (ADAS) may contain 150 ECUs or more, while pick-up trucks like Ford’s F-150 top 150 million lines of code. Even low-end vehicles are quickly approaching 100 ECUs and 100 million of lines of code as more features that were once considered luxury options, such as adaptive cruise control and automatic emergency braking, are becoming standard....

7/10/2021

科技魅癮 (數位季刊)

 科技魅癮 

《科技魅癮》每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,以「領路人」、「談觀點」、「探研究」、「躍思考」、「看世界」、「飆研值」等6個專欄,自多元視角剖析、探討該領域在臺灣及全球的研發現況、未來發展、相關衝擊及影響,希望藉由這個平臺,促進科際交流及跨域合作、激發科研人員創意思維、拓展產學鏈結網絡,進而增進國內研發能量。

沈孟儒院長:「精準健康,用科技讓醫療深植人心」2021-03-31

簡禎富教授:「產業維新的初衷,是為了讓臺灣社會邁向以人為本的智慧生活。」2021-06-09

6/22/2021

The Future of Supply Chains

Paul Marks, The Future of Supply Chains, Communications of the ACM, July 2021, Vol. 64, No. 7, Pages 19-21.

Today's supply chains are labor-intensive and expensive to run. A number of autonomous systems that reduce the human factor are about to change all that.

What do the sidewalks around us, the airspace above us, interstate freeways, and deep ocean shipping lanes have in common? The answer is that they are all places where developers of autonomous technology are trying to revolutionize the economics of supply chains. The plan is to use robotic technology to deliver anything from packages to take-out food, groceries, or bulk freight in ways that can reduce the logistics industry's dependence on that most expensive of supply chain costs: human labor. if the use of electric drivetrains can cut carbon emissions too, so much the better.

4/15/2021

Domino's Pizza launched a pilot program with autonomous vehicle provider Nuro

Inside AI, 2021/4/14

Domino's Pizza launched a pilot program with autonomous vehicle provider Nuro and will begin deliveries in Houston this week. The deliveries will be made using Nuro's R2 robots, the first fully autonomous on-road delivery vehicle (without a human safety driver) that's received permission to operate in the U.S.

4/13/2021

Charting a business course for reinforcement learning

Jacomo Corbo, Oliver Fleming, and Nicolas Hohn, It’s time for businesses to chart a course for reinforcement learning, McKinsey, April 1, 2021.
Broadly speaking, we see reinforcement learning delivering this value across the business, with potential applications in every business domain and industry (Exhibit 2). Some of the near-term applications for reinforcement learning fall into three categories: speeding design and product development, optimizing complex operations, and guiding customer interactions.

 Exhibit 2 some applications.

To be sure, implementing reinforcement learning is a challenging technical pursuit. A successful reinforcement learning system today requires, in simple terms, three ingredients:

  1. A well-designed learning algorithm with a reward function. 
  2. A learning environment.  
  3. Compute power. 

Computing power is better than compute power. 

11/26/2020

矽谷創業之神陳五福的創投心法練成術

連以婷 「坦白說,我開始走創投是失敗的!」矽谷創業之神陳五福的創投心法練成術科技新報2020 年 02 月 28 日

坦白說我開始走創投是失敗的,因為做投資時還是依循過去當創業家的心態,但這兩者其實很不一樣。創業家要非常樂觀,因為每個人都知道創業成功的機率可能十之一二,如果不保持樂觀的心態、不相信現在做的事情會成功,別說做下去連創業都不敢想。

但做創投的人則要倒過來,要非常的謹慎、要抽絲剝繭找出所有可能的失敗風險,與創業家互相制衡並補足他們不懂的地方,提醒他們需要小心的部分。我一開始做創投就過於同理這些創業家,好像把過去那份創業的激情投射在他們身上,於是就跟著他們樂觀,反而缺少了制衡力。...

12/29/2019

Prediction Machines: The Simple Economics of Artificial Intelligence

Ajay Agrawal, Joshua Gans, and Avi Goldfarb, Prediction Machines: The Simple Economics of Artificial Intelligence, Harvard Business Review Press, 2018.
Artificial intelligence does the seemingly impossible, magically bringing machines to life--driving cars, trading stocks, and teaching children. But facing the sea change that AI will bring can be paralyzing. How should companies set strategies, governments design policies, and people plan their lives for a world so different from what we know? In the face of such uncertainty, many analysts either cower in fear or predict an impossibly sunny future. 

8/23/2019

自駕車革命

Hod Lipson and Melba Kurman, Driverless: Intelligent Cars and the Road Ahead, MIT Press, 2016.
 近年來,自動駕駛成為各大車廠、科技巨頭競逐的領域,從半自駕(先進輔助駕駛)到全自駕(完全無人駕駛),應用的科技包括傳感技術、機器人學、機器知覺、機器學習、人工智慧、演算法和智慧型運輸系統等等,原本在學術領域的知識逐漸實用化、商品化。

7/01/2019

AIQ 的時代

何玉方譯,AIQ:不管你願不願意,現在已是AIQ比IQ、EQ更重要的時代,商業周刊,2019
Nick Polson and James Scott, AIQ: How People and Machines Are Smarter Together, St. Martin's Press, 2018.
1. AI關鍵發展史上,7個人類智慧影響人工智慧的故事
2. 解讀促進AI發展的4大元素
3. 機器智慧(machine intelligence)新解!借助人工智慧之力「放大」人類智慧
透過歷史人物故事和基礎數學,說明人工智慧的現況與應用適合當成大學通識課程的課本,或是高中數學的課外讀物