Charles Isbell, You Can’t Escape Hyperparameters and Latent Variables: Machine Learning as a Software Engineering Enterprise, keynote speech at NeuIPS, Dec 8th, 2020. (slide 70: What have we learned?)
Successful technological fields have a moment when they become pervasive, important, and noticed. They are deployed into the world and, inevitably, something goes wrong. A badly designed interface leads to an aircraft disaster. A buggy controller delivers a lethal dose of radiation to a cancer patient. The field must then choose to mature and take responsibility for avoiding the harms associated with what it is producing. Machine learning has reached this moment. In this talk, I will argue that the community needs to adopt systematic approaches for creating robust artifacts that contribute to larger systems that impact the real human world. I will share perspectives from multiple researchers in machine learning, theory, computer perception, and education; discuss with them approaches that might help us to develop more robust machine-learning systems; and explore scientifically interesting problems that result from moving beyond narrow machine-learning algorithms to complete machine-learning systems.
沒有留言:
張貼留言