3/03/2022

Interpretable machine learning by Molnar

Molnar, Christoph. “Interpretable machine learning. A Guide for Making Black Box Models Explainable”, 2019. https://christophm.github.io/interpretable-ml-book/.

This book started as a side project when I was working as a statistician in clinical research. I worked four days a week, and on my “day off” I worked on side projects. Eventually, interpretable machine learning became one of my side projects. At first I had no intention of writing a book. Instead, I was simply interested in finding out more about interpretable machine learning and was looking for good resources to learn from. Given the success of machine learning and the importance of interpretability, I expected that there would be tons of books and tutorials on this topic. But I only found the relevant research papers and a few blog posts scattered around the internet, but nothing with a good overview. No books, no tutorials, no overview papers, nothing. This gap inspired me to start writing this book. I ended up writing the book I wished was available when I began my study of interpretable machine learning. My intention with this book was twofold: to learn for myself and to share this new knowledge with others.

沒有留言:

張貼留言