採訪撰文 簡克志,美術設計 林洵安,機器學習 x 鈣鈦礦材料:讓 AI 幫你最佳化太陽能電池材料的製程參數!,研之有物,2022-02-21
機器學習輔助材料設計
為了 2050 淨零排放的目標,太陽能發電為不可或缺的再生能源之一,其中「鈣鈦礦太陽能電池」是近年最熱門的研究領域,不僅成本低廉、光電轉換效率也可達到 25%。然而,鈣鈦礦材料在環境中容易降解,影響使用壽命。材料科學家為了做出效能好又穩定的鈣鈦礦「料理」,無不卯足了勁,替這道菜加上各種「食材」,但是越複雜的菜,調出好味道就越困難。人腦畢竟有限,如果交給機器呢?中央研究院「研之有物」專訪院內應用科學研究中心包淳偉研究員,他與團隊訓練了一套機器學習模型,可以又快又準的找出複雜鈣鈦礦材料的最佳化條件!
材料系統模擬
圖|研之有物
設計最佳化
還記得我們一開始跑模擬的目標嗎?幫助研究團隊在花大錢做實驗之前,先找出最穩定的結構,從結構參數回推好的製程參數,進而得到較好的材料性質。
那麼要如何把這麼多參數的相關性一網打盡呢?有個好工具叫「皮爾森相關性矩陣」(Pearson correlation matrix)。
沒有留言:
張貼留言