General introduction (without math)
- 簡禎富,工業3.5:台灣企業邁向智慧製造與數位決策的戰略,天下雜誌,2019
- Alex J. Gutman and Jordan Goldmeier, Becoming a Data Head: How to Think, Speak, and Understand Data Science, Statistics, and Machine Learning, Wiley, 2021.
- John Maccormick, Nine Algorithms That Changed the Future: The Ingenious Ideas That Drive Today’s Computers, Princeton Univ Press, 2013. (陳正芬譯,改變世界的九大演算法:讓今日電腦無所不能的最強概念,經濟新潮社,2014)
- Cade Metz, Genius Makers: The Mavericks Who Brought AI to Google, Facebook, and the World, Dutton, 2021. (王曉伯譯,AI製造商沒說的祕密: 企業巨頭的搶才大戰如何改寫我們的世界?,時報文化,2022)
- Andrew Ng, How to Build Your Career in AI, 2023. (Free ebook, new)
- Annalyn Ng and Kenneth Soo , Numsense! Data Science for the Layman: No Math Added, 2017. (沈佩誼譯,文科生也看得懂的資料科學,碁峰,2018)
- Cathy O'Neil, Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy, 2016 (許瑞宋譯,大數據的傲慢與偏見:一個「圈內數學家」對演算法霸權的警告與揭發,大寫出版,2017)
Podcast:
- 簡禎富,IC之音|藍湖策略.數位轉型 (知識含量很高的節目,眼睛休息的時候,可以聽一下,以了解產業現況)
- Causal Bandits Podcast by Alex Molak
- The Robot Brains Podcast hosted by Pieter Abbeel
- Allen B. Downey, Elements of Data Science, No Starch Press, 2023.
- Aurélien Géron, Hands-on Machine Learning with Scikit-Learn, Keras and TensorFlow, O'Reilly, 3rd edition, 2022. (Python, nice mathematical introduction)
- Shlomo Kashani and Amir Ivry, Deep Learning Interviews: Hundreds of fully solved job interview questions from a wide range of key topics in AI, arXiv:2201.00650. (It is a nice review and checking after you take machine learning courses.)
- Wes McKinney, Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, O'Reilly Media, 3rd edition, 2022. (Creator of Pandas)
Broad introduction
- Dimitris Bertsimas, Allison K. O'Hair, and William R. Pulleyblank, The Analytics Edge, Dynamic Ideas LLC.
- Required course for the Master of Business Analytics at MIT
- Foster Provost and Tom Fawcett, Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking, O'Reilly Media, 1st edition, 2013.
- Stuart J. Russel and Peter Norvig, Artificial Intelligence: A Modern Approach, Pearson, 4th edition, 2020.
Graduate ML books
- 李家岩、洪佑鑫,製造數據科學:邁向智慧製造與數位決策,前程文化,2022 (「製造數據科學」的課程網頁)
- Steven L. Brunton and J. Nathan Kutz, Data-Driven Science & Engineering: Machine Learning, Dynamical Systems, and Control (Python, Videos by Brunton) (new)
- Bradley Efron and Trevor Hastie, Computer Age Statistical Inference: Algorithms, Evidence and Data Science, Cambridge University Press, 2016.
- Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, Second Edition, February 2009.
- Trevor Hastie, Robert Tibshirani, and Martin Wainwright, Statistical Learning with Sparsity: the Lasso and Generalizations, Chapman & Hall, 2015.
- Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, Jonathan Taylor, An Introduction to Statistical Learning: With Applications in R and Python. (new)
- Jure Leskovec, Anand Rajaraman, Jeff Ullman, Mining of Massive Datasets, Cambridge University Press, 3rd edition, 2020. (courses, book material)
- Kevin Patrick Murphy, Probabilistic Machine Learning: An Introduction, MIT Press, 2022.
- Part I on foundational math tools, Table of content
- Endorsements
- Kevin Patrick Murphy, Probabilistic Machine Learning: Advanced Topics, MIT Press, 2023.
- Talk at Princeton
- Table of content
- Endorsements: The chapter on generative models is a masterpiece. -- Geoff Hinton
- A. Ng, Machine Learning Specialization (more courses by Ng)
- Rudin, Cynthia. Intuition for the Algorithms of Machine Learning, Self-pub, eBook, 2020. (Videos)
- The analysis of a ML problem usually depend on optimization.
- Christopher M. Bishop and Hugh Bishop, Deep Learning: Foundations and Concepts, Springer, 2024. (CYCU ebook)
- David Foster, Generative Deep Learning, 2nd Edition, O’Reilly, May 2023 (code, CYCU ebook)
- With appropriate math and pictorial explanation, this is a nice book to learn about this important field.
- 因為生成式 AI 實在太火紅,前一陣子開始學習這個領域。再一次發現,大學的基礎數學是如此的重要。
- Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning, MIT Press, 2016.
- Hung-yi Lee (李宏毅), Introduction to generative AI, 2024. (new)
- MIT, 6.S191 Introduction to Deep Learning (Videos) (new)
- Aston Zhang, Zachary C. Lipton, Mu Li, Alexander J. Smola, Dive into Deep Learning, Cambridge University Press, 2023.
Optimization and machine learning
- Dimitris Bertsimas and Jack Dunn, Machine Learning Under a Modern Optimization Lens, Dynamic Ideas LLC, 2019.
- Required course for the Master of Business Analytics at MIT
- Dimitris Bertsimas and Dick Den Hertog, Robust and Adaptive Optimization, Dynamic Ideas, 2022.
- Bachir El Khadir, Visually Explained. (new)
- Machine Learning and Optimization videos with a strong emphasis on building intuition with visual explanations.
- Omar Skali Lami, Predictive and Prescriptive Analytics in Operations Management, MIT doctoral dissertation, 2022.
- I.S. Paskov, Stable Machine Learning, MIT, doctoral dissertation, 2022. (new)
- Dimitri Bertsekas, Many (free) books
- Prof. Bertsekas is one of my favorie authors.
- DeepMind and UCL, reinforcement learning
- Mykel J. Kochenderfer, Tim A. Wheeler, and Kyle H. Wray, Algorithms for Decision Making, MIT Press, 2022.
- Pascal Poupart, CS885 Reinforcement Learning (lecture notes and videos) (new)
- With background in machine learning and optimization, you could master the material in this course.
- Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction, second edition, MIT Press, 2018.
沒有留言:
張貼留言