12/30/2018

多變數生產函數

連結未知的點

這週的微積分進度是多變數生產函和偏微。

除了解釋公式的管理意涵外,依照往例,我會說明完整的故事,例如如何利用行銷,找到影響需求量的關鍵因素;利用網路技術,搜尋相關的數據;利用經濟學,了解可能的需求函數;利用統計學,找到需求曲線,以驗證假設和資料間的相關性;利用微積分和作業研究, 找到合適的價格; 最後,使用程式實現之。

有了這樣的基礎 ,就可以了解價格變化對需求的影響,連動到後端的供應鏈和存貨管理。 這種精準的預測能力,是大數據和機器學習火紅的根本原因之一。

當然,完成這樣的系統不容易。 不過,我請同學退一萬步想 ,同儕間有多少人有這種本事。 和大學畢業文憑數相比,就可知道兩者之間的差距。

12/29/2018

Machine Learning Yearning by Andrew Ng

Andrew Ng, Machine Learning Yearning, 2018.

集結作者豐富的產學經驗,說明開發機器學習系統的整體概念、要點、和方法。輸入 email 後,會收到全文。

我也節錄該書中部分的概念,融入資料探勘課程中。

使用最佳化 (optimization) 方法以插補遺漏資料 (missing data imputation)

D. Bertsimas, C. Pawlowski and Y. Zhuo, From Predictive Methods to Missing Data Imputation: An Optimization Approach, Journal of Machine Learning Research, 18 (2018), 1-39. (pdf)

資料科學第一步是做資料的分析,常常面臨的問題是資料有遺失,在此篇論文中,作者使用最佳化的方法以插補 (impute) 遺失的資料。這是延續 Prof. Bertsimas 之前的研究方法,也可以參考此授課大綱 (Machine Learning via a Modern Optimization Lens) 中所引述的論文。

因為最佳化的問題為非凸 (nonconvex),所以轉成整數規劃;但整數規劃的求解時間太久,所以用一次條件 (coordinate descent (坐標下降法)) 快速地求解和傳統方法 (K-NN, SVM, trees) 比較,得到較好的結果
For models trained using opt.impute single imputations with 50% data missing, the average out-of-sample R^2 is 0.339 in the regression tasks and the average out-of-sample accuracy is 86.1% in the classification tasks, compared to 0.315 and 84.4% for the best cross-validated benchmark method.
論文中的參考文獻大都來自醫學,看了 Y. Zhuo 的資料,才知道和 D. Bertsimas 開了家新創公司 Interpretable AI也可以從中了解美國大學的產學運作機制,如何將最新的研究轉成商品或軟體公司

的介紹,是把兩位前學生放前面,展現 D. Bertsimas 的氣度和尊重人才的重要性

12/25/2018

創業家兄弟靠 AI 找出利潤高的好賣商品

進一步來說,創業家兄弟的AI系統,在篩選好賣又利潤高的商品(他們稱為高性價比商品)時,會透過一星期的觀察,來分析商品銷售率、退貨率,以及消費者比價(包括評價星數和文字評價)等指標,來自動調整架上的品項。而這攸關創業家兄弟營收的7,000品項選品過程,完全由AI操作,不需要人為介入。另一方面,公司在選品時,也會偏好毛利相對高的非標準品,也就是變化性多元、沒有標準規格的商品,比如居家用品和服裝等,以與綜合型電商產生差異。 
此外,創業家兄弟也將AI選品系統,運用在限時特賣上。該系統分析過往商品銷售資料,找出在特定時節銷售量特別好的商品,來進行限時特賣。不過,所以,創業家兄弟發言窗口坦言,由於限時特賣會受到許多變因影響,還需人為介入。 
除了將AI和大數據分析用在選品策略上,創業家兄弟也用於客製化廣告和個人化精準行銷。廖家欣指出,透過採集商品點擊數據和消費者行為資料,自家公司的資料科學團隊可用來分析購買過程,提高個人化商品推薦。而創業家兄弟的關係企業松果購物,也已運用AI來開發「猜你喜歡」功能,也就是根據消費者行為軌跡,來推薦可能感興趣的商品。

12/14/2018

上銀科技的研發和推動產學合作

萬年生,76歲熱血歐吉桑,用研發讓世界看得起MIT,今周刊,2018-11-07
「現在我們是日本傳動零件第二大在地供應商,占有率超過日本精工(NSK)、東晟(IKO)和椿本(Tsubaki)。」別看卓永財說得一派輕鬆,要讓台灣製造敲開由日本製造掌握的技術局面,甚至後發先至,其實困難重重。 
日本市場,是上銀整體營運的縮影。今年前三季,上銀營收近二二七億元、每股稅後純益(EPS)十五.五九元,雙雙超越去年全年水準;法人預估,二○一八年營收更可望寫下新高的三百億元,有機會挑戰賺進兩個股本。 
此外,卓永財也因一九二一%的總股東報酬率、市值增加一二三六億新台幣等綜合績效,在九月摘下《哈佛商業評論》「二○一八台灣執行長五十強」第八名。...

12/11/2018

中山大學教授們用 AI 把養蝦育成率提高到 7 成


即使漁民頻繁巡察蝦塭,也難以精確掌握蝦子生長進度,必須靠撈蝦檢視的方式抽樣整個蝦塭生長進度,加上台灣養殖業主高齡化,高齡漁夫冒惡劣天氣巡察也讓人驚心,中山大學海洋科學系教授洪慶章推動跨學系專案,與資訊工程系教授黃英哲合作,要讓AI應用落地,解決老漁夫痛點。 

12/04/2018

The true cost of fast fashion (快時尚的真正成本)

The Economist, The true cost of fast fashion, 2018/11/29


Millions of tonnes of clothes end up in landfill every year—it’s one of the fastest-growing categories of waste in the world. How can the fashion industry continue to grow while addressing the environmental need for people to buy fewer clothes?

12/03/2018

How Germany’s Otto uses artificial intelligence

Otto’s work stands out because it is already automating business decisions that go beyond customer management. The most important is trying to lower returns of products, which cost the firm millions of euros a year. 
Its conventional data analysis showed that customers were less likely to return merchandise if it arrived within two days. Anything longer spelled trouble: a customer might spot the product in a shop for one euro less and buy it, forcing Otto to forgo the sale and eat the shipping costs.

ActiveRemediation: The Search for Lead Pipes in Flint, Michigan

Jacob Abernethy, Alex Chojnacki, Arya Farahi, Eric Schwartz, Jared Webb, ActiveRemediation: The Search for Lead Pipes in Flint, Michigan, KDD 2018.

We detail our ongoing work in Flint, Michigan to detect pipes made of lead and other hazardous metals. After elevated levels of lead were detected in residents' drinking water, followed by an increase in blood lead levels in area children, the state and federal governments directed over $125 million to replace water service lines, the pipes connecting each home to the water system. In the absence of accurate records, and with the high cost of determining buried pipe materials, we put forth a number of predictive and procedural tools to aid in the search and removal of lead infrastructure. Alongside these statistical and machine learning approaches, we describe our interactions with government officials in recommending homes for both inspection and replacement, with a focus on the statistical model that adapts to incoming information. Finally, in light of discussions about increased spending on infrastructure development by the federal government, we explore how our approach generalizes beyond Flint to other municipalities nationwide....

Applying artificial intelligence for social good (將人工智慧應用於社會福利)

Michael Chui, Martin Harrysson, James Manyika, Roger Roberts, Rita Chung, Pieter Nel, and Ashley van Heteren, Applying artificial intelligence for social good (將人工智慧應用於社會福利), McKinsey Global Institute (麥肯錫全球研究所), November 2018
Through an analysis of about 160 AI social impact use cases, we have identified and characterized ten domains where adding AI to the solution mix could have large-scale social impact. These range across all 17 of the United Nations Sustainable Development Goals and could potentially help hundreds of millions of people worldwide. Real-life examples show AI already being applied to some degree in about one-third of these use cases, ranging from helping blind people navigate their surroundings to aiding disaster relief efforts. 

12/02/2018

台灣製造業共通挑戰

台灣人工智慧學校第一期開學典禮

產業共通挑戰:瑕疵檢測,自動流程控制,預測性維護,原料組合最佳化 (slide 10 to 26)

12/01/2018

Data science framework for TFT-LCD manufacturing

Chia-Yen Lee and Tsung-Lun Tsai, Data science framework for variable selection, metrology prediction, and process control in TFT-LCD manufacturing, Robotics and Computer Integrated Manufacturing 55 (2019) 76–87.
TFT-LCD panel manufacturers rely on experimental design and engineering experience for process monitoring and quality control throughout the production line. To shorten production and reduce the cost of labor resources, this study proposes a three-phase data science framework embedded with several data mining and machine learning techniques, which can identify the variables affecting yield, predict the metrology result of photo spacer process, and suggest the process control in the color filter manufacturing process. An empirical study of Taiwan's leading TFT-LCD manufacturer is conducted to validate the proposed framework. The results indicate that the proposed framework effectively and quickly selects the important variables, predicts the metrology result with higher performance, and identifies the main effect and interaction effect of the selected variables for yield improvement.